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Summary: Epistemologists have debated at length whether scientific discovery is a rational 
and logical process. If it is, according to the Artificial Intelligence hypothesis, it should be 
possible to write computer programs able to discover laws or theories; and if such programs 
were written, this would definitely prove the existence of a logic of discovery.  
Attempts in this direction, however, have been unsuccessful: the programs written by 
Simon’s group, indeed, infer famous laws of physics and chemistry; but having found no 
new law, they cannot properly be considered discovery machines. The programs written in 
the «Turing tradition», instead, produced new and useful empirical generalization, but no 
theoretical discovery, thus failing to prove the logical character of the most significant kind 
of discoveries. 
A new cognitivist and connectionist approach by Holland, Holyoak, Nisbett and Thagard, 
looks more promising. Reflection on their proposals helps to understand the complex 
character of discovery processes, the abandonment of belief in the logic of discovery by 
logical positivists, and the necessity of a realist interpretation of scientific research. 

 
 
 
1. The epistemological problem of the logic of discovery 
 
Is there a logic of discovery? There has been a long debate on this question among 
philosophers of science, with people like Francis Bacon, John Stuart Mill and Hans 
Reichenbach answering “yes”,  and no less important characters, such as William 
Whewell, Albert Einstein, Carl Hempel, and Sir Karl Popper, answering “no”. 

No wonder it is so, since the question is torn between the horns of a seemingly 
unescapable dilemma: on the one hand, discovery must be rational, for we honour great 
discoverers like Newton, Lavoisier, Einstein, etc., as exceptionally rational minds, not 
as lucky, or sensitive, or super-naturally endowed people.  But if the process of 
discovery is rational, mustn’t it therefore follow rational criteria and rules, hence a 
logic? On the other hand, it is well known that chance, luck, and insight often play an 
important role in discovery (as it happened, for instance, with Kekulé’s discovery of the 
exagonal structure of benzene, which was prompted by a dream).1 And above all, if 
discovery were just a matter of rule following, why couldn’t anyone learn the necessary 

                                                           
1 See Hempel (1966) ch. II 
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rules and become a great scientist? Or why couldn’t the scientists themselves just follow 
the logic of discovery and program in advance new discoveries, and rapidly achieve 
such results as a cure for cancer, or the cold fusion of atom, which while sorely needed 
still elude the efforts of researchers?2 

It might be thought that a logic of discovery is a necessary but not sufficient 
condition for the success of research; still, no one so far has satisfactorily shown what 
this logic is, or codified its rules. No doubt, Bacon and Mill provided clear examples of 
such rules, respectively through the “tables” of presence, absence and degrees, and 
through the canons of concordance, difference, concomitant variation and residues, and 
something similar did Whewell and John Herschel. But these are simply guidances to 
induction as empirical generalization, allowing to discover empirical regularities or 
positive correlations among known factors. As acknowledged by Mill,3 they have little 
to say when it comes to the discovery of unknown entities or forces, of representations 
of unobservable levels of reality, or of unifying theories. In other words, they have little 
to say concerning the most important discoveries, such as the theory of gravitation, the 
atomic theory, the electromagnetic theory, the relativity theory, and so on. The same is 
true, a fortiori, of Reichenbach’s method for searching for a limit of relative 
frequencies.4  

Peirce’s abductive logic, on the other hand, supposedly leads to discover causes or 
explanations beyond the level of empirical data;5 but as pointed out by Laudan and 
Pera,6 abduction does not lead to the idea of the relevant concepts or hypotheses, but 
rather presupposes it; abduction, therefore, is to be considered more a logic of pursuit 
than of discovery.7 

If one accepts the hypothesis that machines can be built to perform the intelligent 
tasks of the human mind,8 one ipso facto sides with the supporters of the logic of 
discovery: for on the one hand discovery is certainly one of the tasks of human 
intelligence,  and on the other hand mechanical processes are algorithms, and algorithms 
follow a logic. Thus, if a machine could run a process of discovery, there would be at 
least one logic of discovery, the one followed by that machine. Supporters of the 
                                                           
2 See ibidem. 
3 Mill (1843) III, ch. XI, § 3. 
4 See Reichenbach, (1961), pp. 350 ff. 
5 See for instance Peirce (1931-35) vol. VI, p.358; Peirce (1958) vol.VII, p.122; Fann (1970). 
6 Pera (1982), p.84; Laudan (1980), p.174; see also Curd (1980). 
7 On the question of  scientific discovery, see the web sites http://server.math.nsc.ru/LBRT/logic/vityaev/; 
www.aaai.org/Press/Reports/Symposia/Spring/ss-95-03.html; 
http://www.unipv.it/webphilos_lab/courses/papers/creat_proces.htm 
8 This is usually called the weak Artificial Intelligence hypothesis, as contrasted with the strong 
hypothesis, namely that that machines can be built to perform the same tasks by the same processes as 
human intelligence. Actually, the original distinction between weak and strong Artificial Intelligence put 
forward in Searle (1980) was slightly different: according to the weak hypothesis machines can simulate 
thought, without actually having cognitive states, while according to the strong hypothesis machines 
really can think, understand, and have other cognitive states. The weak/strong contrapposition is also used 
in the literature to indicate different distinctions: machines can only work on data supplied by humans / 
machines can produce data themselves; machines can perform some of the intelligent tasks performed by 
humans / machines can perform all the intelligent tasks. See the following web sites: 
http://www.comp.glam.ac.uk/pages/staff/efurse/Theology-of-Robots/Arguments-for-Strong-AI.html 
http://sern.ucalgary.ca/courses/CPSC/533/W99/intro/tsld024.htm 
http://www.faqs.org/faqs/ai-faq/general/part1/section-4.html 
http://www.comp.glam.ac.uk/pages/staff/efurse/Theology-of-Robots/Arguments-Against.html 
for a general introduction to Artificial Intelligence, see http://padova.fimmg.org/ring/docs/ai_tutorial.htm 
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hypothesis that machines can be built to perform the same tasks by the same processes 
as human intelligence9 would claim even more, namely that the machine’s logic of 
discovery could also be the same logic followed by human researchers. Moreover, 
Artificial Intelligence would seem here to offer a unique opportunity for empirical 
testing of a philosophical conception: believers in the logic of discovery can prove their 
point simply by producing a machine that actually makes discoveries. Needless to say, 
people have seized this opportunity, even if judgement on their outcomes crucially 
depends, as it turns out, on what is meant by “actually making discoveries”.10 

 
 
 

2. The programs of Herbert Simon 
 
This is precisely what Herbert Simon (philosopher of science, computer scientist and 
Nobel laureate for Economics) tried to do, together with his co-workers (among whom 
Pat Langley, Gary Bradshaw and Jan Zytkow authored with him the panoramic volume 
Scientific Discovery. Computational Explorations of Creative Processes).11 They 
produced computer programs intended to show that scientific discovery is just problem 
solving, that problem solving is a rational activity, that it has a logic, and that it can be 
mechanized. In fact, they took  this challenge so seriously that they chose some of the 
most famous discoveries in the history of science, in order to prove that a machine 
could do the same.  

The first series of their programs is significantly called “Bacon” (with versions 
from Bacon1 through Bacon5), after the philosopher who thought of mechanizing 
discovery to the point of making it almost independent of human skill.12 

Bacon1 looks for laws describing regularities in its body of data, following rules 
(“heuristics”) such as: 

- if the value of a term is the same in all data clusters, assume that it is constant; 
- if the values of two terms are linearly related in all data clusters, assume that such 
relation is constant; 
- if the values of one term increase as the values of another term decrease, consider their 
product, and see whether it is constant; 
- if the values of two terms increase together, consider their ratio, and see whether it is 
constant.13 

In this way, Bacon1 is able to discover Kepler’s third law starting from the values 
of periods and distances of planets from the sun; Boyle’s law starting from the values of 
pressure and volume in a gas; Galileo’s law of uniform acceleration starting from times 
and distances; Ohm’s law starting from the length of a wire and the intensity of current. 

                                                           
9 That is, supporters of the strong Artificial Intelligence hypothesis: see note 8. 
10 Ccerning computational work on scientific discovery, see the following web sites: 
http://www.wam.umd.edu/~zben/Web/JournalPrint/printable.html 
http://dmoz.org/Computers/Artificial_Intelligence/Creativity/Scientific_Discovery/ 
http://www.aaai.org/Pathfinder/html/discovery.html 
http://directory.vaionline.it/Siti_Mondiali/Computers/Artificial_Intelligence/Creativity/Scientific_Discov
ery/ 
http://www.isle.org/~langley/discovery.html; http://www.citeseer.nj.nec.com/105475.html 
11 Langley, Simon, Bradshaw, Zytkow (1987). 
12 See Bacon (1620), Preface; I,61. 
13 Langley, Simon, Bradshaw, Zytkow (1987) p.76. 
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Bacon2, instead, searches for constant derivatives, rather than products and 
constants. Bacon3 applies the same heuristics as Bacon1 to bodies of data including more 
than two independent variables, thus discovering the ideal gas law from the values of 
temperature, pressure and volume for different quantities of a gas; Coulomb’s law from 
the values of two charges, distance and force acting between them; and more complex 
versions of Kepler’s third law and Ohm’s law.14 

Bacon4 can deal with cases in which data are names of objects, rather than 
numerical values for their properties. Thus, it can rediscover Ohm’s law when provided 
just with the names of different wires and batteries, and the values for intensity of 
current. It does so by adding to the heuristics of Bacon1 and Bacon3 a new one, to the 
effect that when the values of a given property of one object (e.g. the current of one 
battery) vary with the related objects (e.g. with different wires), then it must be 
postulated that there is a property of these related objects which is responsible for such 
variation (e.g., conductance), and whose values are proportional to those of the first 
property (current).15  

In this way, Bacon4 postulates the existence of new unobservable properties, 
whose effects are supposedly manifested by the available data. This happens also when 
it finds out about volume, density, index of refraction, specific heat, gravitational mass 
and inertial mass. The authors stress that this amounts to the introduction of theoretical, 
i.e. unobservable, properties, whereas an observable property would be one that may be 
observed or measured either without instruments, or by instruments which are not 
considered problematic in the given contest. In the case of Ohm’s law, for instance, data 
are the names of objects and the values of intensity of current, hence an amperometer 
might be considered non problematic; but conductance cannot be measured either 
without instruments or with the help of an amperometer.16  

Nonetheless, this does not seem to be a full-fledged example of theorization, since 
the new property is not embedded in a whole theory describing it, its nature, causes, 
functioning, effects, etc. Its introduction, here, is just matter of detecting a regularity in 
the behavior of observable objects and properties, and ascribing to it as a cause a 
property which is identified just by means of this particular effect (exactly as one could 
say that since opium makes people sleep, it must have a virtus dormitiva)17. In fact, its 
values are computed directly from the values of the observable properties involved.18 
Thus, we should say at most that Bacon4 takes some of the most elementary steps in the 
process of theorizing.  

Another heuristic tells Bacon4 to look for common divisors and their regularities. 
In this way the program may be applied to chemical research, and starting from the 
proportions of weights and volumes of elements in  compounds it finds  the molecular 
and atomic weights of various elements and compounds.19 This is not to say it discovers 
either the molecular or atomic theory, however; for it finds just numbers, and it is only 
in the light of our knowledge of atomistic chemistry that we may interpret those 
numbers as atomic or molecular weights. 

                                                           
14 Ibidem, pp. 88-108. 
15 Ibidem, p. 135. 
16 Ibidem, pp. 129-130. 
17 See Molière (1673), troisième intermède, quoted in. Pasquinelli (1964), p.87. 
18 See Langley, Simon, Bradshaw, Zytkow (1987), pp.130-132. 
19 Ibidem, pp. 160-167. 
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The last version, Bacon5, was created by adding to the earlier ones the notion of 
physical symmetry, and the rule that if a particular relation holds among a set of 
variables, (e.g., two objects with respective initial and final velocities), it must be 
presumed that it holds among variables of the same type (e.g., two different objects with 
respective initial and final velocities). Hence, on condition of being told which variables 
are of the same type, the system is able to speed up significantly its search for 
regularities (such as the law of conservation of momentum, Snell’s law of refraction, or 
Joule’s law). Bacon5 is thus theory-driven, i.e. it imitates those cases of actual science in 
which research is not merely based on data, but on theoretic presuppositions as well.20 
Even more theory-driven is a different system, Black, which has inbuilt the notion that 
certain properties are conserved, by which it can find the law of specific heat much 
faster than Bacon4.21 

In spite of their vast potentialities, the Bacon programs cannot deal with 
qualitative laws, nor give structural descriptions of reality. This greatly limits their 
applicability, especially to the field of chemistry, and to overcome this weakness three 
new programs have been developed: Glauber, Stahl and Dalton.22 Glauber uses as data 
descriptions of chemical reactions (such as “hydrogen chloride reacts with ammonia to 
form ammonium chloride”) and properties of chemicals (such as “hydrogen chloride 
tastes sourly”), and its heuristics instruct it to group in the same class the chemicals 
entering the same type of reaction, or having the same properties. Thus, it forms the 
classes of salts (tasting salty and formed by the reaction of an acid with an alkali), of 
acids (tasting sourly and reacting with alkalis to give salts) and of alkalis (tasting bitter 
and reacting with acids to form salts). 

Stahl uses the same kind of data about chemical reactions to detect the 
components of various substances: if x and y react to produce z, it infers that z is 
composed of x and y; the same if x, y and w react to produce z and w (in this case it 
infers that w is idle in such a reaction). Furthermore, it draws inferences by substituting 
substances with their components, and vice versa. For instance, if z is composed of x 
and y, and z reacts with q to give r and y, Stahl infers that x, y, and q react to produce r 
and y; hence (discarding y that is idle), r is composed of x and q.  

In this way, if fed with data about reactions interpreted as the phlogiston theorists 
did (e.g., charcoal and air react to give phlogiston, ash and air), it infers the same 
analysis of substances given by the phlogiston theory (e.g., that charcoal is composed of 
phlogiston and ash). In fact, it stumbles on some of the same problems that puzzled the 
phlogiston theorists, and that lead to modifications in their theory: when fed with the 
results of reactions conducted by Priestley in 1773, it is forced to conclude that one of 
the components of mercury is mercury itself! On the other hand, when fed with 
reactions as interpreted in the oxygen theory, Stahl correctly yields the nowadays 
accepted composition of chemical substances.23 Nonetheless, it is clear that Stahl does 
not discover either the phlogiston or the oxygen theory, but simply applies them: it 
accomplishes what Kuhn would have called normal science tasks,24 or perhaps a simple 
analytical elaboration of data. 

                                                           
20 Ibidem, pp.170-185. 
21 Ibidem, pp.185-191. 
22 See ibidem, respectively chs. 6, 7 and 8. 
23 Ibidem, pp.248-251. 
24 See Kuhn (1962), chs. II, III, IV. 
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The same can be said about Dalton: starting again from data about reactions, and 
assuming that the number of molecules involved in a reaction is proportional to the 
volumes of the respective elements, it infers the molecular structure of compounds. 
Moreover, assuming that atoms are conserved in reactions, and that molecules are 
composed of the smallest number of atoms compatible with the law of conservation and 
the known molecular structures, Dalton infers the atomic structures of elements and 
compounds. 

 
 
 

3. Gillies and the programs in the Turing tradition 
 
Donald Gillies, among others, has criticized the results of Simon’s work,25 pointing out 
that his programs can simulate the discovery of known laws, but have not been able to 
discover any new law, or solve any practical problem. But obviously, finding what is 
already known is not making a discovery at all! (Moreover, as I have stressed, they 
haven’t found any theory, not even old ones). Gillies contrasts them with the programs 
produced by disciples of Alan Turing and researchers working in their tradition, such as 
Ehud Shapiro, Stephen Muggleton, Donald Michie, Edward Feigenbaum, Bruce 
Buchanan, J.R. Quinland and Ivan Bratko,  programs which have successfully been 
applied to the solution of practical problems and have made new (hence actual) 
discoveries.26 

For instance, DENDRAL, developed since 1965, accomplishes what an expert 
chemist might do, inferring the molecular structure of organic compounds from their 
mass spectrogram. ASSISTANT has been able to diagnose various kinds of disease better 
than human specialists. GOLEM was able in 1991 to predict the secondary structure of 
proteins from their primary structure. Primary structures, in fact, are easily known, but 
secondary structures are more important, and up to then they could be discovered only 
by long and expensive methods, such as nuclear magnetic resonance or X-ray 
chrystallography. GOLEM, instead, discovered a number of rules linking certain primary 
structure characters to certain secondary structure characters, such as:   

There is an α-helix residue at position B in protein A if: 
1) the residue in B-2 is not proline, 
2) the residue in B-1 is neither aromatic nor proline, 
3) the residue in B is large, non-aromatic and non-lysine, 
4) the residue in B+1 is hydrophobic and non-lysine, 
5) the residue in B+2 is neither aromatic nor proline, 
6) the residue in B+3 is neither aromatic nor proline, and it is either small or polar, 
7) the residue in B+4 is hydrophobic and non-lysine.27 

Gillies credits such rules as “new laws of nature” discovered by GOLEM. But it is 
far from clear that they qualify as such, because (a) they have a very low level of 
generality, as the above example shows, (b) as he himself concedes they fail in about 
20% of cases, and therefore (c) it is dubious that they describe actual causal 
relationships, as opposed to contingent statistical correlations.  

                                                           
25 Gillies (1996), ch. 2.1. See also the monographic issue International Studies in The Philosophy of 
Science (1992). 
26 Gillies (1996), ch. 2 throughout. 
27 Ibidem, ch. 2.6. 
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Summing up, all these programs produce generalizations connecting a target 
property (such as a secondary structure character, or a particular disease), to the 
presence or absence of symptomatic properties (such as primary structure characters, or 
symptoms manifested by patients); they do so by checking which symptomatic 
properties are present or absent when the target property is known to be present. This is 
to say, they practice, though with sophisticatedly iterated procedures, nothing but 
Baconian or Millian induction. No wonder therefore these programs have only 
discovered low level generalizations, and no theories, theoretical laws, entities or 
explanations. Just as enumerative induction, also Bacon’s tables and Mill’s canons, in 
fact, may establish horizontal links among empirically known entities or properties, but 
no vertical links among observable and non-observable levels of reality. 

According to Gillies the difference between the approach of Simon’s group and 
that of Turing’s tradition, allowing the latter to achieve new discoveries (aside from the 
fact that the former tries to repeat historical discoveries, while the latter tries to solve 
open problems) is double: first, Simon’s approach is “psychological”, i.e. it imitates 
human inferences, while that of Turing’s tradition is “logical”, i.e. it starts with logical 
(inductive) inference rules and sees what they can lead to; second, they differ just in the 
way intuitive pre-fregean inferences differed from formalized fregean inferences.28  

Actually, however, neither of these differences seems to hold: Simon’s inference 
procedures are obviously formalized, since they can be carried out by a machine; and 
the procedures of Baconian induction implemented in the Turing tradition programs are 
no less instances of actual human inferences than Simon’s heuristics. The only real 
difference seems to be that Baconian induction is a very general (although weak) 
inferential mechanism, while Simon’s heuristics are stronger, but therefore also of 
narrower applicability. Hence, it is hard to apply them to problems for which a clear 
solution strategy is not already known. Simon could certainly have written programs to 
achieve results of the kind of DENDRAL, ASSISTANT or GOLEM. Simply, he wouldn’t have 
thought that such results could teach much on the problem of the rationality and 
mechanizability of scientific discovery.   

 
 
 

4. An alternative approach 
 
Up to this point, at any rate, the attempts based on Artificial Intelligence might seem to 
yield a negative answer to the question of the logic of discovery, quite against the hopes 
of their authors! For it would seem that scientific discovery (at least in its most 
significant instance, theoretical discovery) cannot be mechanized; hence, that it does not 
have a logic, hence, that it is not rational. Actually, these would be fallacious inferences, 
because there might be a logic even without explicit rules and mechanizable algorithms; 
and there can be rationality (prudential or argumentative rationality, as advocated since 
Aristotle and up to Thomas Kuhn)29 even without logic. Still, even if not yielding a 
negative answer, Artificial Intelligence would seem utterly unable to yield a positive 
one.  

                                                           
28 Ibidem, ch. 2.1. 
29 See for instance Aristotle, Nichomachean Ethics, I, 3, 1094b-1095a; Kuhn (1970), § 5: Irrationality and 
the Choice Among Theories; Pera (1982), pp.29 ff.; Pera (1991), pp.66-74, 117-124, passim. 
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This conclusion could be avoided by suggesting that perhaps so far all the 
attempts of mechanizing discovery have failed because wrong-headed, and new 
attempts might succeed by adopting different approaches. An example could be the 
proposal advanced by John Holland, Keith Holyoak, Richard Nisbett and Paul Thagard 
(henceforth HHNT) in Induction. Processes of Inference, Learning and Discovery.30 
They try to reconstruct the cognitive processes by jointly relying on cognitive science, 
philosophy and computer science, and describe a program (“PI”, for “processes of 
induction”) which purports to replicate the crucial features of such processes. 

Knowledge is represented by HHNT as the construction of mental models of the 
environment.31 Environment, in turn, is described as consisting of states and transition 
functions among them: for instance, the fact that all bodies moving at time t have ceased 
to move at time t’ may be described as the state S(t), in which bodies move, the state 
S(t’), in which bodies stand still, and the transition function T, turning whatever moves 
into something still. Of course, there can be long chains of states and transition 
functions, and particularly important chains are those in which the initial state 
represents a theoretical or practical problem for the knowing subject, and the final state 
represents its solution (HHNT stress the importance of pragmatics in their approach).  

For HHNT the mind is like a bulletin board, on which “messages” (i.e. 
propositions) are posted. More precisely, one could speak of two sides of a bulletin 
board: a front side, on which currently active messages are posted (i.e. propositions in 
the working memory, currently involved in cognitive processes), and a back side, with 
non-active messages (propositions stored in the long term memory). In mental models 
states are represented by categoric messages (e.g.: “all bodies move”; “this body is 
moving”; etc.), and transition functions by hypothetical messages, or “rules” (e.g., “if a 
body moves at time t, it will stand still at time t’”). 

Beside empirical rules, describing transition functions in the environment, there 
exist also inferential rules, governing the construction and modification of models in the 
face of inputs from the environment. These include generalization rules, simplification 
rules, specialization rules, etc. A generalization rule, for instance, prescribes that if a 
message is posted to the effect that all members of a sample of objects of type A have 
property P, then another message should be posted to the effect that all objects of type 
A have P. A simplification rule says that if we post an empirical rule to the effect that 
all feathered and large-winged animals fly, and another to the effect that all feathered 
and small-winged animals fly, we should post another one to the effect that all feathered 
and winged animals fly. A specialization rule prescribes that if a counterexample is 
found to an empirical rule, the latter should be replaced by another rule allowing for that 
exception. 

Empirical rules and categoric messages typically form chains: suppose a message 
is posted as a result of an experience input (e.g., “x barks”). If a rule is also posted 
having the content of such message as its antecedent (e.g., “if x barks, then x is a dog”), 
then a message stating the consequent will also be posted (“x is a dog”), and so on. 
Actually, a message may be posted by the converging effect of more than one rule (e.g., 
“if x is a fox-terrier, then x is a dog”, etc.), and in turn it may start many chains at once, 
depending on the activated rules (e.g., “x barks”; “if x barks, then y will wake up”; “y 
wakes up”; etc.). Thus, an ever-growing number of connections is activated, in a 
process of spreading activation. In fact, the same mechanism accounts also for a 
                                                           
30 Holland, Holyoak, Nisbett, Thagard (1986). 
31 Ibidem, chs. 1, 2. 
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spreading activation of concepts: the concepts involved in an active rule become active 
too, and each of them in turn activates all the other rules in which it is involved, which 
in their turn activate other concepts, and so on. (Concepts themselves are conceived by 
HHNT, more or less as in Putnam’s account of scientific concepts,  as clusters of 
rules.32 A rule might connect two concepts, for instance, by expressing relations of 
similarity (cats are like tigers), of causations (smoke causes lung cancer) or of category 
(cats are mammals)). 

As it happens, however, there is only limited room on a bulletin board, as well as 
in the human mind. Therefore, not all potentially activated messages will be posted, and 
messages will compete for room on the board. Besides, mutually incompatible messages 
that might be posted will be in competition even independently of room scarcity. The 
competition takes place more or less as it happens on the economic market: messages 
and rules in a chain can be viewed as suppliers, middlemen and consumers, where 
selling and buying consists in activating or being activated. When the final ring of a 
chain constitutes the successful solution to a problem (hence the importance of the 
pragmatic dimension in this approach), its success is comparable to profit, which is duly 
shared with each preceding ring, as each buyer pays back the goods or services that 
reached him through the chain.  

Such “profits” increase the “capital” of each message in the chain, i.e. its strength 
in the competition (or, out of metaphor, its credibility). Reversely, when the final ring is 
unsuccessful (as it does not solve the problem, or it is refuted by experience), it loses 
part of its capital, and so do all the other rings in the chain. In the competition for 
posting, the winner is determined by its capital and by the total capital of all the rules 
and messages concurring to its activation. In practice, the environment’s feed-back 
gradually reinforces successful beliefs and extinguishes unsuccessful ones, just like  
market reactions make efficient firms flourish and inefficient ones go bankrupt. 

When it comes to scientific discovery, it may concern either laws or theories, 
which in HHNT’s account means either rules or models. New rules33 may be  generated 
either from old rules or from data. New rules may be generated from old rules, for 
instance, by applying the inferential rules of simplification or specialization: from a rule 
with unnecessarily complex antecedent (e.g., “if x is feathered and large-winged, then x 
can fly”) a new one is generated with a simpler antecedent (“if x is feathered and 
winged, x can fly”); from a rule to which there is a counterexample, a new rule is 
generated including the counterexample as an exception case. 

Otherwise, new rules may be generated from the data, either by applying a 
generalization rule, for instance as in enumerative induction, or by abduction. If we 
observe that various objects with property P also have property Q, by a generalization 
rule we may generate the rule “If x is P, then x is Q”; instead, if we wish to explain why 
a given object has property Q, we may notice that it has also property P (and perhaps 
that even other objects with Q have also P); then we  may form the same rule, not so 
much on the basis of the various observed instances, as because such rule, coupled with 
the fact that the given object has P, would explain its having Q, thus reasoning by 
abduction.34 

                                                           
32 See Putnam (1962), pp.378-379.  
33 See Holland, Holyoak, Nisbett, Thagard (1986), ch. 3. 
34 Notice that, as mentioned earlier, this inference has not generated new concepts, but only a new 
generalization involving already known concepts. 
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All this clearly concerns empirical rules. HHNT do not discuss the generation and 
evolution of inferential rules; but on the one side it is apparent that inferential rules are 
much fewer and less changeable then empirical rules; on the other side, it does not seem 
impossible that in the long run some new inferential rule may be generated, and may 
gain or lose strength by the same mechanisms as empirical rules, i.e. by their 
contribution to the final success or failure of a chain of messages; after all, according to 
HHNT, the distinction between empirical and inferential rules is not a sharp one.35 

While interpreting scientific laws as rules, HHNT interpret theories as models 
(that is, whole systems of rules and categoric messages), and suggest that analogy plays 
the central role in their discovery.36 This is just natural, since theories typically model 
non-observable systems, and how else could one figure out about unobservable 
structures, except by analogy with the observable ones?37 If finding a theory for a 
particular set of phenomena is to embed them in a model, working by analogy means 
taking three steps: first, finding an already accepted model of a different set of 
phenomena as the convenient source for the new model; second, mapping the various 
aspects of the phenomena we are investigating onto aspects of the phenomena of which 
we already have a model; third, constructing the new target model by positing objects, 
properties, relations, etc., as corresponding via the above mapping to those of the source 
model.  

(Since the source model must already be part of our knowledge, the question may 
arise, how it was built. If it concerns non-observable phenomena it was likely built by 
analogy, too. If it concerns observable phenomena, it was built by empirical inputs and 
inferences. Since a model of observable phenomena may be the source for an analogical 
model of non-observable phenomena, all models are ultimately based on empirical 
inputs). 

All this is convincingly rendered in HHNT’s spreading activation account of 
cognitive processes: as we noticed, each concept is linked to other concepts by rules 
stating the existence of similarity, causality, or categorial relations between them; now, 
supposing we are trying to embed in a theoretical model the phenomenon that a and b 
are related by relation R, each of the concepts a, b and R will be activated, and 
therefore cause the activation of the various different concepts linked to them in the 
above ways. In turn, each of the newly activated concepts will activate others, and so 
on. We may find then that there is a concept m related to a just in the way a further 
concept n is related to b, and there is a relation Q obtaining between m and n just as R 
obtains between a and b. If we already have a full model in which mQn is embedded, 
i.e. if we know the full net of causal relationships of mQn to other concepts, this may 
work as a source model for aRb; moreover, at this point we already have a mapping 
between the phenomenon to be theorized (aRb) and the source model, and by extending 
such mapping we may begin the construction of the target model. In terms of the 
bullettin board metaphor, this is to say that there is a non active model on the back side, 
that thanks to its connections to currently active concepts (a) becomes active, and (b) 
qualifies as a possible source model for the phenomenon to be explained.  

An example is supplied by the discovery of the ondulatory theory of sound, 
analyzed in Vitruvius’ writings: we wish to develop a theory of sound, explaining 
among other things the fact that sound is reflected, or that it propagates. The concept of 
                                                           
35 Holland, Holyoak, Nisbett, Thagard (1986), p.45. 
36 Ibidem, ch. 10. 
37 See for instance Newton (1687) III, Regulae Philosophandi, rule 2. 
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reflection activates the concept of water waves and of rope waves, for they reflect, too. 
Messages like “rope waves reflect” and “water waves reflect” are then posted. As a 
consequence, also the generalization “all waves reflect” is posted. But this 
generalization could explain why sound reflects, if sound was a kind of wave; hence, by 
abduction, the system goes on posting “sound is a wave”. More or less the same process 
would follow from the activation of the concept of propagation. Otherwise, the concept 
of sound might activate that of musical instruments, and the latter the concept of string 
instruments. “String instruments” might then activate “ondulatory vibration”, and this 
again would connect the idea of sound to that of waves. (Of course, many other links 
would be activated as well, but eventually many of them would prove useless and be 
disactivated).  

PI, HHNT’s program, instantiates the spreading activation model of the mind and 
reproduces simple processes of discovery like the just mentioned one. Admittedly, it has 
not (yet) made any new discovery, nor any old one as complex and important as those 
achieved by Simon’s programs. Yet, it may be considered a promising approach for a 
number of reasons. 

 
 
 

5. Serial vs. parallel computing, complexity, and the lesson on scientific discovery 
 
How does HHNT’s strategy differ from those followed by Simon and by Turing’s 
disciples, and why should it fare better in the attempt to mechanize discovery? In order 
to answer these questions, it should be recalled that up to now computing has mainly 
been performed by serial, or digital computers, direct instantiations or descendants of 
the Turing machine. Yet, the alternative option of connectionist machines or neural 
networks, i.e. parallel or analogical computers, was considered by Turing himself,38 and 
is arising more and more interest today. This distinction matters to our problems, in the 
first place because the brain is a neural network, after all, hence it is a plausible 
suggestion that neural networks or connectionist machines have the best chances of 
reproducing cognitive processes. Now, HHNT’s approach is basically a connectionist 
one (though with differences and qualifications).39 

A serial computer goes through one state after another; with respect to any given 
state it either is or is not in that state, without further alternatives; it uses a well defined 
set of data as an input, and given those data its output is easily predictable: hence, in the 
case of scientific research, it may be used to compute complex numerical or qualitative 
relations among known factors, but it cannot discover structures or mechanisms 
genuinely unpredictable at the moment of its programming. This, as we noticed, is the 
limit both of Simon’s programs and of the programs of Turing’s tradition.  

On the contrary, the mind may be in many states at once (it may entertain 
different beliefs or propositional attitudes, perceptual states, etc.), and so can 
connectionist systems: many messages and many chains can be activated at once in 
HHNT’s model. Moreover, the mind is gradual both with respect to a single state (we 
may have weaker or stronger beliefs, for instance) and to an alternative between states 
(we may believe P, or believe P more than not-P, or be half-way); the same happens in 
HHNT’s system, thanks to the varying strength of messages, and to the gradual 
                                                           
38 See Turing (1969). I owe this reference to Teresa Numerico. 
39 See Holland, Holyoak, Nisbett, Thagard (1986), pp.25-27. 
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overturning of one message or chain by another. Again, mental processes are not closed 
elaborations of a restricted body of data, but open, at any time, to the influence of a 
potentially endless number of inputs, so that the final state is in no way predictable 
beforehand. Even this feature seems to be captured by connectionist machines, as well 
as by HHNT’s model of the mind. Thus, it is at least conceivable that systems of this 
kind make genuinely unforeseen discoveries. 

Perhaps one may venture to sum all this up in a bold opposition: traditional 
computers and programs are simple, while the mind, discovery processes and 
connectionist systems are complex. This may then bear on an interesting historical 
problem: why, after the idea of a logic of discovery had been supported by such 
epistemologists as F. Bacon and J.S. Mill, was it abandoned between ‘800 and ‘900, 
especially by the logical positivists? And why is it becoming popular once again in our 
days?40  

Part of the answer may be that the logical positivists’ main problem was to 
establish a neat demarcation between science and metaphysics, and they solved it by a 
powerful and very simple criterion, on which their whole philosophy was based: 
verification. However, that criterion was too simple, for (as it was to become clear later 
on) it could not yield a full account of the meaning of scientific terms, nor of the 
justification of hypotheses. In any case, it was obvious even to them from the beginning 
that discovery could not be captured by such a simple philosophy, and that may explain 
why they excluded it from their interests and from their tasks: discovery is a holistic 
procedure, in which the potentially endless aspects of a complex environment 
continuously interact with an equally open-ended endowment of conceptual structures, 
background knowledge, methods and criteria.  

With the liberalization of logical positivism, and even more with its final 
abandonment, it was recognized that meaning and justification were complex matters, 
and then even the equally complex matter of discovery could become again a legitimate 
question in philosophy of science. Still, a satisfactory way to deal with such complexity 
has yet to be found. Acknowledging the holistic and complex character of science in 
general, Feyerabend concluded that there is no logic in science, and in discovery in 
particular. But even on more moderate views discovery (as opposed to justification) is 
too complex to be governed by logic or rules.41  

On the contrary, both Simon and the researchers in Turing’s tradition have gone 
back to the faith that science (discovery, in this case) can be analyzed into simple 
processes (Simon came from the logical positivist tradition, after all). But once again, 
the simplicity approach has failed:  in Turing’s tradition only the elementary methods of 
Baconian induction are used, which allow just a very low level of discovery. Even 
Simon has relied on relatively simple heuristic methods, but devising a different specific 
mechanism for each discovery, and obviously taking inspiration from his knowledge of 
the procedure historically followed or of its results. Thus, his programs have been able 
to make significant “discoveries”, but only old ones. Following his approach, one could 
try to make new discoveries only by writing a program that included a specific heuristic 
for each possible discovery, i.e. potentially infinite heuristics, and running all of them 
each time.  

The only possible alternative, if there is one, is a program that can devise by itself 
the discovery path required by the solution of each specific problem; that is to say, a 
                                                           
40 On this question see, Nickles (1980a), and Laudan (1980). 
41 See for instance Achinstein (1980). 
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really intelligent program. If for instance we could program a robot to turn the tap, 
collect water in a tub, pour soap,  dip the clothes, etc., by linking such procedures in a 
chain we could get it to do our laundry; yet, we wouldn’t say it knows how to launder. 
We would grant that it knows how to launder if just upon being ordered to launder it 
could go on by himself,  choosing the procedures and adapting them to the situation 
(there may be no taps, for example, and then water may have to be drawn from a well, 
etc.). In this case the robot would be more intelligent than in the first case; and it would 
be even more intelligent if we could just ask it to look after the house, and let it find out 
by itself whether to launder, or iron, or clean the floor, etc., and how. Intelligence is 
then the ability to pursue ultimate goals by flexibly and adaptively choosing the means 
or the intermediate goals. 

Now, it seems that this is precisely what a machine needs in order to do genuine 
research, without being previously instructed on how to make each discovery: it must be 
able to pursue the goal “discovery”. Further, it seems that this is precisely what HHNT 
try to do, where they basically differ from both Simon and Turing’s tradition, and why 
their attempt is likely to be more successful: they try to devise a mechanism intelligent 
enough to pursue the goal of discovery. It is obvious that only such a mechanism may 
qualify as a plausible imitation or reconstruction of human abilities, and motivate the 
claim that scientific discovery is a logic or rational process in a significant sense. 

This is why I think such a connectionist approach looks promising. It might be 
objected that the connectionist character cannot make the real difference, for anyway a 
connectionist machine can be instantiated by a Turing machine. But first, I am not 
suggesting that the difference is made by the connectionist character alone, but together 
with the adaptive character; second, in any case, what matters is the structure of the 
resulting procedure (i.e., that it be parallel, open to endless inputs at all times, complex 
and self-correcting, etc.), rather than the underlying mechanism implementing it: if we 
can get a Turing machine to work that way, so much the better! 

 
 
 

6. Discovery and realism: the role of models 
 
To better appreciate the reasons of HHNT’s superiority, we may ask what makes it 
possible, i.e., what enables PI’s search for discovery to be self-directed. The answer 
involves at least the following two features: first, HHNT give a correct and fruitful 
characterization of what discovery consists in and how it is achieved, namely, the 
construction of  models of reality; second, they let nature itself steer the program toward 
its goal, through a feedback mechanism. Since discovery is by definition finding 
something hitherto unknown to us, human programmers cannot possibly tell the 
machine where to turn or which ways (heuristics) to follow: they don’t know where one 
should go; only nature, so to speak, knows where the truth lies, and can lead the 
discoverer out of its maze. I shall examine these two features in the present and in the 
following section, respectively. 

As for the former feature, the following three points should be considered. 
i) First, researchers may aim at discoverying  either (a) just empirical laws (as the 

law of constant acceleration); or (b) empirical laws connected to and organized by 
theoretical laws, understood as purely mathematical formulas, whose non-observative 
terms don’t purport to represent anything and lack a physical interpretation (as Maxwell 
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equations might be understood); or (c) both empirical and mathematical laws, but 
embedded in a model or representation of reality (such as the field theory of 
electromagnetism, the cinetic theory of gases, the quantum model of energy, etc.).  

Perhaps the distinction between (b) and (c) is not a sharp one, for seldom 
mathematical formulas are pure projections from the data and are devoid of any bit of 
interpretation.42 Yet, it is intuitively clear and plausible, and there is no doubt that the 
most important discoveries belong to kind (c), while those of kind (b), even if achieved 
independently of a representative model, usually ask for and are soon supplied with one. 
For instance, while Plack’s black-body equation was first devised as a pure 
uninterpreted projection from the empirical data (discovery of kind (b)), it soon got a 
physical interpretation by the quantum model of energy transmission (discovery of kind 
(c)). The importance of kind (c) discoveries is both historical (for their resonance and 
effects) and theoretical (for their systematic, heuristic and cognitive power). 

Hence, by setting the discovery of models as PI’s task, HHNT make at least a 
attempt to pursue discovery in its broadest extension. On the contrary, all the other 
programs are designed merely to discover regularities of kind (a) or (b), hence cannot be 
considered attempts to mechanize human discovering ability in its entirety. 

ii) The second point concerning discovery as modelization is that even if we aim 
simply at laws as regularities, we must first decide which bodies of data we should 
consider and analyze in order to find relevant and interesting generalizations. For 
instance, by considering the values of pressure, volume and temperature in gases, we 
may find that they are linked by the ideal gas law. But how did we come to select 
exactly these parameters, to the exclusion, e.g., of smell, inflammability, and thousand 
others? Equally, by considering the periods and distances from the sun of planetary 
orbits, we may discover that they are significantly related (i.e., by Kepler’s third law: 
the squares of times are proportional to the cubes of mean distances). But there is an 
endless number of different parameters one might have considered for similar relations. 

In fact, the search for regularities is usually guided by models (provisional as they 
may be) the scientists entertain for the reality they are investigating. Even a vague idea 
of gas as consisting of particles subjected to mechanical forces will suggest that, e.g., 
volume and pressure may be relevant and mutually dependant, while smell is not. 
Equally, Kepler tried out a number of models as a guide to find a function for planetary 
distances from the sun: the model of planetary spheres nested into one another as 
respectively inscribed and circumscribed to the five regular solids; the model of a 
proportional relation between a planet’s distance from the sun, and the density of the 
metal associated with it (mercury for Mercury, lead for Venus, etc.);43 and more. 

In many real life cases of discovery, the hardest problem was just to select the 
relevant parameters, for once these were selected, finding the relation holding among 
them proved rather straightforward. Now, neither Simon nor Turing’s disciples say 
                                                           
42 For instance, Planck worked out his black-body formula as complex equation approximating two 
different fuctions which accounted for  empirical  data respectively at low temperatures and high 
frequencies (the formula know as “Wien’s law”) and at high temperatures and low frequencies (a formula 
reflecting the data recently found by Ruben). He didn’t (in the beginning) attach any physical meaning to 
the crucial discontinuity term of his formula, nor associated it to a particular (quantum) model of energy 
transmission. Yet, his formula included terms, as frequency, already embedded into a representative 
model (the wave model of energy, with crests, troughts, and frequency as the number of crests per time 
unit). 
43 Respectively in Mysterium Cosmographicum and in Epitome Astronomiae Copernicanae: see Koyré 
(1961), Part II, sections 1, 3. 
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much on this question, for their programs may get to work only after being fed with the 
relevant data. For instance, Bacon3 will apply its heuristics to whatever set of data about 
a gas it is given (e.g., mass, smell, specific weight, etc.); but only when fed with the 
right date will it find the ideal gas law.44 Equally, only when fed with particular 
information concerning the primary structure of proteins has GOLEM been able to 
discover the desired law concerning their secondary structure.45 

On the contrary, PI tries to select the relevant parameters by itself, and it can do so 
because it looks for analogical models (retrieving them in its background knowledge), 
and those models suggest the relevant parameters. For instance, in the example of the 
theory of sound, the analogies between sound on the one hand and water or ropes on the 
other suggest a wave model for sound, and such a model suggests frequency, wave-
length, etc., as parameters to be considered for discovering the laws of sound. 

iii) The third reason why models are necessary is that, as pointed out by Hanson,46 
theories and even laws are not a mere compendium of data: even once the relevant data 
are selected, the law or theory cannot always be straightforwardly extrapolated from 
them as if one plotted a curve upon a series of points in a Cartesian plane. For example, 
although all the relevant data coming from Brahe’s observations were available to 
Kepler, he reached an apparently simple result as his first law (the planets’ orbit is 
elliptical) only through long efforts, trials and errors.47  

Now, it is well known that (a) for any body of data there are infinite possible laws 
or theories (principle of empirical underdetermination of theories); (b) there are no 
univocal criteria for choosing among laws or theories the most simple, or the most 
elegant, etc.; and (c) it may not always be easy to find a law or theory that is (by any 
criterion) simple or elegant. Hence, if a law or theory were a merely abstract structure, 
with the only constraint of being mathematically compatible with its data (i.e. of 
“saving the phenomena”), the process of discovery would be a sort of mysterious 
pulling the rabbit out of the hat: it would be a question of lucky intuition, there would 
be no rational procedures to follow, it couldn’t be pursued by any computer program, 
and it would be of no concern to the epistemologists. In fact, this may be another reason 
why the logical positivists, who had an instrumentalist attitude toward theories and 
rejected Campbell’s claims on the role of models and analogies in science,48 showed 
little interest in the context of discovery and gave up the search for a logic of 
discovery.49 

On the contrary, if a theory is a model representing an unknown piece of reality, it 
must not only be coherent with its data, but also explain them, and furthermore be 
coherent with the rest of our conceptions of reality. In this case, there is a complex but 
rational path of reasoning going back and forth from data to hypotheses, involving 
reasons, plausibility considerations, analogies, abductive inferences, assumptions, 
models, etc.: the complex but rational path exemplified by the accounts of great 
discoveries given by the historians or by the protagonists themselves.50 This is more or 
less the lesson Aronson draws from the Flatland example: to a bidimensional being 
living on a plane suddenly appears a point, immediately enlarging to become a circle; 
                                                           
44 See Langley, Simon, Bradshaw, Zytkow (1987), ch.3. 
45 See Gillies, (1996),§ 2.6. 
46 In Hanson (1958), ch. 4. 
47 As he explains in his Astronomia Nova. See also A. Koyré (1961), Part II, section 2. 
48  See Campbell, (1952), p.96; Campbell (1957), pp. 123 ff. 
49 See Hempel (1965), pp. 444 ff.; Braithwaite (1962), pp.230-231; Braithwaite (1953), p.51. 
50 As for instance Kepler in Astronomia Nova. 
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the circle grows larger, then shrinks, becomes a point and disappears. If our being is an 
instrumentalist, sticking to his bidimensional data, he may find different formulas 
relating the changing dimension of the circle, its velocity, etc., none better than another 
and none explaining anything; moreover, he has no reason to link the phenomenon in 
significant generalizations with similar phenomena, like the following: a square 
appears, remains for a while, then disappears. Instead, if he is a realist, willing to 
entertain models of a third dimension, one hypothesis naturally links and explains all 
the features of one phenomenon, and different phenomena together: first, a sphere is 
passing through the plane, then, a cube is passing through it.51 

If this is true, a realist interpretation of theories (viewing them as representations 
of reality) is presupposed by any account of the rationality of scientific discovery. By 
the same token, no instrumentalist computer (searching for laws or theories as pure 
projections from empirical data, as the programs written by Simon’s group and in the 
Turing tradition) may become a machine for discovery. Only a realist program like PI, 
striving to find models of reality, has such a potentiality.52 

(An anti-realist à la Van Fraassen may grant that models are necessary for 
heuristic purposes, but deny any need to believe them as true representations of 
reality.53 Such an objection faces the same kind of reply facing Van Fraassen’s position 
in general: how are we to explain the heuristic power of models, if they are not 
potentially true representations of reality? This reply may be challenged in turn, but the 
ensuing discussion cannot be pursued here). 

 
 
 

7. Discovery and realism: the role of nature 
 
If we grant that the task of a discovery machine is finding models, how does it select the 
right model? This has to do with the second feature enabling PI to be autonomous from 
human guidance: the fact of letting nature itself lead the program’s search for discovery. 
This is achieved by building into the program two mechanisms: the first that, triggered 
by empirical inputs, through spreading activation produces an open number of models 
of reality; the second that,  through the message competition and profit redistribution, is 
sensitive to nature’s feedback: any step taking the system closer to its goal (producing a 
correct model of reality) activates a reward feedback, stengthening that move, and vice 
versa for steps in the opposite direction. If such mechanism is flexible and adaptable 
enough to match (to a certain extent, at least) the complexity and graduality of the 
environment, then the system should be able to lead to results that cannot be foreseen in 
advance, just as it happens with human procedures of discovery. The general model, 
here, is that of other well known adaptive and self-directed systems, such as the free 
market (an analogy explicitly exploited by HHNT), and natural selection. 

Actually, both evolutionary studies and cognitive sciences seem to indicate that 
natural selection itself has built into the human mind a similar couple of mechanisms. 
Thus, it is also plausible that a program like PI is a good model of human abilities, 

                                                           
51 See Aronson (1984), ch 7, § 2. The idea comes from Abbott (1953). 
52 O the role of models in scientific discovery, see the web sites: 
http://lgxserver.uniba.it/lei/recensioni/crono/2000-06/magnani.htm; 
http://philos.unipv.it/courses/inf_proc.htm 
53 See Van Fraassen (1980), ch.2, § 1.3. 
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including abilities to search and discover. Even this feature of HHNT’s approach speaks 
for a realist interpretation of science: if the evolution and choice of models is 
constrained by the environment’s feedback, then they do represent at least some aspects 
of reality. It is as if nature used human or mechanical researchers to paint its own self-
portrait! Moreover, if the attitude of building models has been built into the human 
mind by natural selection, it is plausible that such models are true representations of 
reality, for acting on the basis of true representations warrants success in the search for 
food, defence from predation and reproduction. 

Once again, anti-realists may object that (a) nature’s feedback on the modeling 
processes of programs like PI are just empirical data: hence, such feedback simply 
warrants empirical adequacy, and (b) empirically accurate models shall be equally 
useful, for evolutionary purposes, as true models.54 Still, we must ask how a living 
organism or a computer program can get to an empirically adequate model: the 
phenomenical aspect of nature is extremely complex, and there is no chance, either for 
living organisms or for machines, of building a general and detailed table of empirical 
data, yielding particular predictions for all kinds of situations, just by collecting 
empirical data and introducing ad hoc adjustments each time a prediction is not born out 
by experience. The only chance is to bet that underneath the great surface complexity 
there stand relatively simple ontologies and mechanisms that can be rationally 
understood, and try to model them; empirical predictions can then be deduced from the 
models. Now, if such a bet were not generally and approximately correct, it would be 
surprising that relatively simple models yielded arrays of predictions that are so 
complex, detailed, and largely born out by experience. Further, if such a bet were just an 
idle extrapolation, it would be surprising that natural selection had inbuilt it into the 
cognitive procedures of highly evoluted organisms; if instead it is the main road for 
discovery, it becomes clear why programs like PI have a chance of mechanizing 
discovery that earlier programs lacked. 

                                                           
54 Similar objections are raised, for instance, in  B. Van Fraassen (1980), ch.2, §§ 3, 4, 7, and Hacking 
(1983), ch. 3. 
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