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1. Introduction

The theme of symmetry is of great interest to mathematician, physicists, chemists,
biologists, psychologists, philosophers, and others. The very word “symmetry” is
used with a wide variety of meanings; I will only discuss the way it is used in
mathematics.

In fact, even this seems to me too ambitious a goal. Symmetry permeates every
field of mathematics, and I do not have the intention, and even less the ability, to
give a comprehensive picture of its multifaceted aspects.

The mathematical analysis of the concept has been traditionally based on the theory
of group actions. As we shall discuss, this notion is global; that is, the symmetries
of a structure (geometric or otherwise) always involve the whole structure. It is
natural, on the other hand, to talk about local symmetries, symmetries that appear
only among certain parts of the structure itself. Mathematicians have a local theory
of symmetry, which is known as the theory of groupoids.

However, its existence does not seem to have been really noticed outside of the
communities of mathematicians and theoretical physicists; the only place in the
philosophical literature where I have seen it discussed is Corfield’s book (Corfield
2003), which, I am afraid, has not been read by many philosophers, because of the
vast mathematical background it requires.

The very modest purpose of this note is to give a quick introduction to symmetry
in mathematics, and point out the existence of a mathematical analysis of the notion
of local symmetry to philosophers and others who may be interested in this theme.
No originality whatsoever is claimed for any of the ideas presented here.

2. The classical point of view: symmetry via group actions

In this section we give a quick introduction to the classical point of view on
symmetry in mathematics.

Let us venture to give a general, necessarily vague, definition of symmetry in
mathematics. A symmetry is a transformation that preserves certain properties.
Two objects are symmetric if they can be obtained from each other with such a
transformation. Hence, by definition, two symmetric objects have some common
properties, the one preserved by the transformation.
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Historically, one of the first examples comes from euclidean geometry. One of
the basic notions is that of congruence (formerly known as equality ; but today the
latter word is better reserved for the relation of identity). Two geometric figure
are congruent when they can be superimposed. What does this mean? In Euclid’s
Elements this notion, while constantly used, is never defined. Here is the modern
definition.

An isometry is a transformation of the euclidean plane E2 onto itself which
preserves distances. Here is a more precise definition. We consider E2 as a collection
of points, that is, as a set whose elements are points1. Given two points p and q in
E2, there is a non-negative real number d(p, q) called the distance of p and q.2 An
isometry of the euclidean plane is a bijective transformation f : E2 → E2 such that
for any two points p and q of E2, the distance between pf and qf (here we indicate
with pf the transform of p along f , instead of the more traditional f(p)) equals the
distance between p and q.3

Two figures T and T ′ in E2 are congruent if there exists an isometry of E2 that
carries T onto T ′. It turns out that all the other concepts of euclidean geometry
(angles, areas, . . . ) can be expressed in terms of distance; hence two congruent
figures have the same properties in euclidean geometry.

This definition of isometry is quite general, and one might suspect that it includes
wild operations never considered by Euclid; but this is not the case, as all isometries
are either translations, rotations, reflexions along a line or glide-reflexions (a glide-
reflexion is the composite of a reflexion along a line with a translation along a vector
parallel to the line).

It is a very important fact that isometries can be composed. If f and g are two
isometries, we indicate by fg the transformation that we obtain by first applying
f , then g (in symbolic terms, if p is a point of E2 we have p(fg) = (pf)g.). The
composite fg is easily checked to be again an isometry. Also, because an isometry f
is bijective, we have the inverse transformation f−1 : E2 → E2, which can be seen to
be again an isometry.

We will denote by Isom2 the set of all isometries in the plane. Then Isom2 is a
group of transformations of E2, in the following sense. Let M be a set. A group of
transformations of M is a set G of bijective transformations sending points of M in
points of M , in such a way that:

(a) The identity idM
4 is in G.

1Of course, this leave open the question of what E2 really is. One possibility is to identify E2

with the cartesian plane R2; while this works quite very in practice, it is conceptually somewhat
unsatisfactory, as it endows E2 with a preferred element, the origin (0, 0), and two preferred
directions, corresponding to the two coordinate axis. A better solution is not to give a univocal
definition of E2, but say that a euclidean plane is a principal homogenous space under a two-
dimensional real vector space with a positive defined inner product. (Of course will probably fly
right over the head of most readers.) Or one can give an axiomatic treatment of E2, as Hilbert did
(see (Hilbert 1899) for an English translation), without making a reference to the real numbers;
this is not, however, the point of view that we want to take here.
2If E2 is identified with R2, then the points p and q are pairs (p1, p2) and (q1, q2) of integers, and the

distance d(p, q) is given by the usual expression
√

(p1 − q1)2 + (p2 − q2)2, coming from Pythagoras’
Theorem.
3It can be shown that the condition that f be bijective is actually automatically satisfied, so it
does not need to be part of the definition, but this is non-trivial.
4This is the transformation sending each point of M into itself.
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(b) If f and g are in G, their composite5 fg is also in G.
(c) If f is in G, then the inverse transformation f−1 is also in f .

We obtain an example by taking M = E2 and G = Isom2.
Here is a very general construction. Every time we have some kind of “space”

(considered, usually, as a set of points), or more generally, a “structure” M , we can
consider the set of transformations of M into itself that preserve the structure under
consideration (in the case of the euclidean plane E2, the structure was given by the
distance). These transformations are called automorphisms of M , and form a group
of transformations, often denoted by AutM . Let us consider some examples, again
coming from geometry.

Another form of geometry that has a very old history is spherical geometry, that is,
the geometry of the surface of a sphere. It was first developed (of course, as a part of
euclidean geometry) by the astronomer Menelaus of Alexandria in the first century
B.C.; he was the first to recognize that great circles6 played a role very analogous to
that of lines in plane geometry. This geometry has an automorphism group, called
the orthogonal group in three dimensions O3; its elements consist of rotations along
an axis passing through the center of the sphere, reflexions along planes through the
center, and their composites.

Another very important form of geometry that emerged in the 17th century is
projective geometry. Inspired by the studies of perspective of Renaissance painters
such as Brunelleschi, Kepler and, above all, Desargues, followed by Poncelet and
von Staudt at the beginning of the 19th century, have introduced a form of plane
geometry in which distance is no longer defined, and the central concept is that
of incidence between line and point. It is truly remarkable that one do something
interesting with so little. The transformations that conserve projective properties
are those sending lines into lines; they form a group, the real projective group in two
dimensions PGL2(R).

In the first half of the 19th century Gauss, Lobachevsky and Bolyai introduced
hyperbolic geometry. A fundamental step for our history was taken by Eugenio
Beltrami, Arthur Cayley and Felix Klein, who gave a metric model for hyperbolic
geometry. In this way one can discuss automorphisms of this geometry; these form a
group, the real special projective group in two dimensions PSL2(R).

In all these cases one has a space M with some structure, and a group of transfor-
mations G of M preserving the structure.

In 1872 Klein gave to light his “Erlangen program” (see for example (Klein 1924,
Part 3)). In technical terms, this consists of defining geometry as the study of
homogeneous spaces. “Geometry” is defined as the study of those properties that
are invariant under a group of transformations. For example, euclidean geometry is
defined as the study of the properties of “figures” that are invariant under isometries.
Spherical and hyperbolic geometry can be defined similarly.

A group of transformations G on a set M is called homogeneous if every point of M
can be carried to any other point via an element of G. According to Klein, “geometry”
is the study of properties of subsets of M that are invariant by the transformations
in G.

5We define the composite fg by first applying f and then g, as in the case of isometries. This is
against the usual convention, but has some advantages.
6That is, the circles cut on a sphere by a plane passing through its center.
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It is a great idea, but like all ideas it has some limits. In fact, in some sense it was
outdated already at birth: in 1868 Riemann published his fundamental work “Über
die Hypothesen welche der Geometrie zu Grunde liegen” (for an English translation,
see (Riemann 1854)), in which the idea of metric geometry, that is, geometry based
on a notion of distance, is expanded far beyond the realm of homogenous spaces.

This said, the geometry of homogeneous spaces is extremely important even today.
From the notion of transformation group there slowly emerged in the 19th century,

formalized in the 20th century a notion of abstract group, now simply called a group.
A group is a set G, with an operation that associates with every pair of elements g
and h of G another element of G, usually denoted by gh, in such a way that

(1) there exists an element 1 of G, called the identity, such that 1g = g1 = g every g
in G;

(2) the operation is associative, that is (gh)k = g(hk) for any g, h an k in G, and
(3) every element g has in inverse g−1, with the property gg−1 = g−1g = 1.

Starting from these axioms, one shows that the identity and the inverse of an
element are unique.

Groups appear almost every in mathematics; despite the apparent simplicity of
the axioms, the theory of groups is enormously complex.7

Most groups arise as groups of transformations, but not all of them.
One should not be left with the impression that symmetry is important only in

geometry; in fact, it plays a role in all the fields of mathematics (at least, I am
not aware of any exception). Let us see an example, Galois groups, which are very
important in number theory.

Take a finite set X = {1, . . . , n}, without a particular structure. The set of all
symmetries is denoted by Sn, and is called the symmetric group on n symbols. It has
n! = 1× 2× (n− 1)× n elements. For n = 2 it has two elements:

1 // 1

2 // 2

1
''

1

2

77

2

For n = 3 it has 6:

7This system of axioms is quite different in spirit from Euclid’s and Hilbert’s axiom systems for
euclidean geometry. The latter are foundational in nature, and have the aim of pinning down as
precisely as possible a unique model that one has in mind. The system of axioms for groups, instead,
identifies a wide class of structures. Cultured laymen, for example philosophers who have done
some reading in the history of mathematics, may be left with the impression that “axiomatics” in
mathematics is important because mathematicians care about rigor and foundations, and want their
concepts defined with as much precision as possible, through systems of axioms like Hilbert’s (for
examples, the axioms for set theory). In fact, systems of axioms are used pervasively in mathematics
for non-foundational purposes, but they are almost always of the first kind, that is, they are meant
to single out a whole class of structures, which can then interact among themselves, and with other
kinds of structures, instead of a single structure in which all the action takes place.
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1 // 1

2 // 2

3 // 3

1
''

1

2

77

2

3 // 3

1

  

1

2 // 2

3

>>

3

1 // 1

2
''

2

3

77

3

1
''

1

2
''

2

3

>>

3

1

  

1

2

77

2

3

77

3

The operation in this group is given by composition.
Take a polynomial of degree n, f(x) = xn +a1x

n−1 + · · ·+an−1x+an, with rational
coefficients. It has n roots u1, . . . , un in the complex plane C. These are subjects
to various algebraic relations with rational coefficients. As an example, take the
polynomial x4−2. Its complex roots are u1 =

4
√

2, u2 = i
4
√

2, u3 = − 4
√

2, u3 = −i 4
√

2.

u1

u2

u3

u4

The roots are subject to various algebraic relations: for example, u1 + u3 = 0,
u2 + u4 = 0, u2

1 + u2
2 = 0.

Consider the group Sn of permutations of u1, . . . , un. The Galois group of f(x) is
the group of permutations in Sn which conserve all the relations. In the example,
the permutation that swaps u3 e u4 keeping u1 e u2 fixed is not in the Galois group
of x4 − 2, because u1 + u3 = 0 while u1 + u4 6= 0. One shows that the Galois group
of x4 − 2 contains 8 elements, represented by the symmetries of the square formed
by the roots, as in the picture above; this is called a dihedral group, and is denoted
by D4.

However, this example is too simple, as it might induce to believe that the algebraic
symmetries of a polynomial, that is, the elements of its Galois group, come from
geometric symmetries of the roots. This is completely false. For example, the roots
of x5 + 4x + 3 are pictured below
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The only symmetry that is evident from the diagram is a reflexion along the real
axis, while in fact the Galois group of x5 + 4x + 3 is the whole symmetric group S5;
that is, any permutation of the roots gives an algebraic symmetry.

But sometimes in the study of an object X we are not interested, or can’t
control, all the symmetries, but only some of them. Furthermore, an absolutely
fundamental technique to study a group is to let it act as a symmetry group on some
other structure. For example, an enormous branch of mathematics, with manifold
aspects, called representation theory, studies precisely how a group can act via linear
transformations.

A action of a group G on a structure X consists in the assignment of a symmetry
of X to each element of G, in such a way that if g and h are in G, the symmetry
assigned to gh is the composite of the transformation assigned to g and that assigned
to h. If an action of G on X is given, we say that G acts on X.

An action of G on X is often given as a function X × G → X, denoted simply
with (p, g) 7→ pg. It must satisfy the following conditions.

(1) p1 = p.
(2) p(gh) = (pg)h.

This can be visualized as follows.

p

pg

g

h

pgh

gh

An action of G on X is transitive if, given any two elements p and q of X, there
exists g in G that carries p onto q (that is, such that gp = q).

More generally, given an action of a group G on a space X, and given a point p of
X, one defines the orbit of p as the set of points of X that can be reached from p. In
other words, the orbit of p is the set of points pg, where g is an element of the group.

To give an example, if E2 is the euclidean plane, its groups of symmetries Isom2

acts on it. But there is also an action of Isom2 on the cartesian product E2 × E2,
given by (p, q)g = (pg, qg). Given (p, p′) and (q, q′) in E2 × E2, when is (q, q′) in the
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orbit of (p, p′)? The answer is: if and only if the distance between q and q′ equals
the distance between p and p′.

This point of view is enormously important in mathematics. To study a structure
we are interested in its group of symmetries (or automorphisms). But to study the
group of automorphisms, it can be extremely useful to make it act on other structure.

Furthermore, it should be pointed out that groups often has an additional geometric
structure. We call them discrete groups when we are only interested in their algebraic
structure; often, however, they have a natural topology, or a more refined geometric
structure. Then we talk about Lie groups, topological groups, algebraic groups, and
so on8.

For instance, take the groups Isom2 of plane isometries: we can talk about two
isometries being “close” or “distant”. For example, two translations of the plane
along two vectors whose difference has very small length should be considered as
close. As a more sophisticated example, let us imagine to take rotations of a smaller
and small angle, whose center of rotation move further and further away. If this is
done appropriately, these rotation get closer and closer to a translation. On the other
hand, one cannot get closer and closer to a reflexion with a sequence of rotations;
rotation and reflexions are always “distant”. In technical terms, they belong to
different connected components of Isom2. The group Isom2 has a natural structure
of a Lie group.

The theory of groups, both discrete and non-discrete, pervades most of mathematics.
Let me only mention a very important result, and an open question.

The problem of the classification of all finite groups (describing all finite groups)
is exceedingly complex, completely inapproachable at the present time. However, in
the first half of 1980’s all the finite simple groups have been classified. Finite simple
groups are, in some sense, the bricks with which all finite groups are built. It is one
of the most complex mathematical results ever achieved: finite simple groups form
18 different infinite families, with 26 exceptional groups, not included in any of the
families. The largest of the exceptional groups is known as the monster 9; it has
808.017.424.794.512.875.886.459.904.961.710.757.005.754.368.000.000.000 elements.

The following problem is still open. What are the finite groups that can appear as
Galois groups of polynomials with rational coefficients? It is conjectured that all of
them can, but this has not been proved.

Thus, the following slogan could be, and has been, adopted.

The mathematical theory of symmetry is the study of group actions.

3. The local point of view: symmetry via groupoids

Like most slogans, this contains some truth, but also some falsehood10.

8Thus, Lie groups, and so on, are not particular kinds of groups, different from discrete groups,
but groups with additional structure. One can take a Lie group, forget the additional structure,
retaining only the algebraic structure, and get a discrete group.
We should also notice, however, that the discrete groups that one obtains this way are not very
interesting; the discrete groups that are amenable to being analyzed with our tools are those
satisfying some kind of finiteness condition, while the discrete groups that one obtains from Lie
groups are much too large. In other word, when working with Lie groups, the geometric structure
interacts in an essential way with the algebraic structure, and the interest and richness of the theory
arises from this interaction.
9Amusingly, there have been attempts to rename it the friendly giant, but they did not catch.
10I say “most slogans” because some slogans only contain falsehood.
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As a theory of symmetry, the theory of group actions is not completely satisfactory.
Its main problem is that it is a global theory. The symmetries of a structure, as we
have defined them, always involve the whole structure.

Let us imagine a spherical surface, depicted below11.

This has a large symmetry group, composed of the rotations along an axe passing
through the center of the sphere12. These form a group, denoted by SO3.

Now, let us imagine drilling three holes in the sphere in irregular position.

After this act of vandalism, our sphere has only one symmetry, namely the identity.
But is it really reasonable to say that the sphere with holes has no non-trivial
symmetry? Choose two points p and q of the pierced sphere. Unless p or q is very
near one of the holes, the sphere looks very much the same close to p and close to
q, so it seems like there should be a symmetry carrying p onto q. In other words,
shouldn’t we be able to say that the sphere has symmetries in certain areas, but not
everywhere?

So we are asking for a local theory of symmetry. Well, such a mathematical theory
exists. It is the theory of groupoids13.

11We will call this spherical surface simply a sphere. In mathematics by a sphere one always intends
a spherical surface, and not a solid sphere, which is called a ball.
12We are only considering the orientation preserving symmetries; there are other, such as the
reflexions along a plane passing through the center, which reverse the orientation of the sphere.
13Of course, asking for “a theory of symmetry” is not something that a mathematician would do, it
is more appropriate for a philosopher. Like all scientists, mathematician tend to be pragmatic, and
build a theory only because it is needed in order to study some specific phenomena. For example,
the definition of groupoid (in a slightly different form from the one I will give below) first appeared
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What is a groupoid14? Let us start from an example.
Consider the spheric surface S2 as above, and let SO3 be the group of rotations

along an ass passing through the center of S2. Then SO3 acts on S2; an element g of
SO3 can be applied to a point p of S2, obtaining another point pg of S2. Now, call
X our surface with holes; we can think of X as a subset of S2, the set of points of
S2 that are not in one of the three holes. The group SO3 does not act on X: if g is
in SO3 and p is in X, the point pg of S2 could be in one of the holes, so not in X.
The solution consists of considering the set R of pairs (p, g) in the cartesian product
X ×G, with the property that pg is in X. We can think of such a pair (p, g) as a
symmetry from p to pg. Thus, an element g of SO3 does not give a global symmetry,
because pg is not always in X, but it gives a symmetry from certain parts of X to
other parts.

This set of symmetries R has a rather complicated structure. First of all, there
are functions s : R → X and t : R → X; the first sends (p, g) into s(p, g) = p, the
second into t(p, g) = pg. So, for each u in R, we think of u as a symmetry from s(u)
to t(u)15, as in the following picture.

u

s(u) t(u)

Furthermore, if p is in X, then the pair (p, 1) is in R. In fact p1 is p, which is in X
by hypothesis. Hence, there is a function e : X → R sending p into the (p, 1). This
element plays the role of an identity; but unlike the theory of groups, there is not
just one identity, but there is one for each element of X.

p

e(p)

There is also a composition operation. Assume that (p, g) and (q, h) are in R. If
pg = q, then p(gh) = (pg)h = qh is in X; hence we can define the composite

(p, g)(q, h) = (p, gh). So, we have an operation of composition c : R̃→ R, where R̃ is
the set of elements (u, v) of R×R such that t(u) = s(v). As above, we denote the
composite of u and v simply by uv. A groupoid will have an operation, but, unlike

in a 1927 article (Brandt 1927) by Heinrich Brandt, who was motivated by a concrete problem in
algebra, that of the composition of quadratic forms.
14In some older literature a groupoid is defined as a set with a binary operation, without any
hypothesis whatsoever. This is obsolete terminology; such a structure is nowadays called a magma.
15The letters s and t come from the English words source and target.

 
 © Isonomia. Rivista di filosofia  

ISSN 2037-4348 | Ottobre 2011 | pp. 1–12 !



10 Angelo Vistoli

in the case of groups, this operation will not be defined for all pairs.

u v

s(u) t(u) = s(v) t(v)

uv

Finally, if (p, g) is in R, then (pg)g−1 = p(g−1g) = p1 = p; the pair (pg, g−1) is called
the inverse of (p, g), and goes from pg to p. We denote the inverse of an element u
by u−1; call i : R→ R the function that sends u onto u−1.

u

u−1

s(u) = t(u−1) t(u) = s(u−1)

These two operations satisfy a collection of obvious identities.

(1) s(uv) = s(u), t(uv) = t(v);
(2) s

(
e(p)

)
= t
(
e(p)

)
= p;

(3) s(u−1) = t(u) and t(u−1) = s(u);
(4) (uv)w = u(vw) (associativity);
(5) e

(
s(u)

)
u = u and ue

(
t(u)

)
= u (the e(p) are identities);

(6) uu−1 = e
(
s(u)

)
and u−1u = e

(
t(u)

)
(u−1 is the inverse of u).

A groupoid consists of two sets R and X, with functions s, t : R→ X, c : R̃→ R
e i : R→ R satisfying the conditions above.

Here are some examples.

(1) An action of a group G on a set X gives a groupoid, with R = X ×G.
(2) An equivalence relation on a set X gives a groupoid.

Recall that an relation on a set X is given by a subset R ⊆ X ×X.16

An equivalence relation on X is a relation R ⊆ X × X with the following
properties:
(a) it is reflexive: (p, p) is in R for every p;
(b) it is symmetric: if (p, q) is in R, then (q, p) is in R;

16Every property of pairs of elements of X gives a relation, the set of pairs (p, q) which have this
property. This uncompromisingly extensional use of the word “relation” is very widespread in
mathematics.
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(c) it is transitive: if (p, q) and (q, r) are in R, then (p, r) is also in R.
From an equivalence relation R ⊆ X ×X we obtain a groupoid: s : R → X

are defined by s(p, q) = p, t(p, q) = q, the composition is defined by (p, q)(p, r) =
(p, r), and (p, q)−1 = (q, p).

(3) The groupoid of symmetries of a bundle.
The notion of bundle is a very important one. A bundle E on a space X

consists of a structure of a certain type Ep for any point p of X.17 The groupoid
R of symmetries of E on X is defined as follows: an element of R consists of
a triplet (p, q, f), were p and q are points of X, and f an isomorphism of the
structure Ep with the structure Eq.

Why are groupoids important in mathematics, and how are they used? Here the
discussion should become very technical, and I will have to limit myself to giving
some hints, and pointers to the literature for a more thorough introduction.

From the strictly algebraic point of view, that is, without an added geometric
structure, the theory does not differ in an essential way from the theory of groups; in
particular, for example, the problems of classification of finite groupoids is essentially
the same as the problem of classifying finite groups. However, groupoids are particular
cases of a more general concept, that of category (a category is like a groupoid,
without the function i : R→ R). The theory of categories has become very pervasive
in mathematics; it has a very different flavor from algebra, and we can say that
passing from groups and groupoids adds a level of complexity to the analysis.

But one starts to really see the power of the theory of groupoids when one considers
groupoids R over X when R and X have a geometric structure. For example, the
theory of Lie groupoids is a very wide extension of the theory of Lie groups, and has
a range of applications that is much broader. It also gives an approach to very deep
questions, such as the construction of spaces of orbits.

So, let us formulate a new and improved slogan.

The mathematical theory of symmetry is the study of groupoids.

Suggestions for further readings. A very good introductory paper on the theory
of groupoids is (Weinstein 1996). Another useful survey, with an overview of the
history of the subject, is (Brown 1987). The bibliographies of these two articles
contain many references; however, the rest of the literature I am familiar with is
written for mathematicians, and is not easy to approach for a layman. The book
(Higgins 2005) gives an introduction to the categorical aspects of the theory of
groupoids, and is relatively accessible. For the theory of Lie groupoids, a standard
reference is (Mackenzie 2005). For the applications to algebraic topology one can
consult (Brown 2006).
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